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Abstract-The general theory of shock and acceleration waves in isotropic, incompressible, hyperelastic
solids is used in conjunction with the concept of finite elements to construct discrete models of highly
nonlinear wave phenomena in elastic rods. A numerical integration scheme which combines features of finite
elements and the Lax-Wendroff method is introduced. Numerical calculations of the critical time for shock
formulation are given, Numerical results obtained from representative cases are discussed,

I. INTRODUCTION

Until very recent times, the quantitative study of the dynamic response of highly elastic solids
at finite strain has stood outside the reach of existing analytical and computational methods. The
complete dynamical theory, is, itself, still being pieced together some 20 years after the modern
era of finite elasticity began (e.g. [1,2]), and while a few solutions to finite-amplitude vibration
problems have been contributed (e.g. [3-5] or, for additional references, [6]), and while some
advances have been made in the theory of finite elastic waves (e.g. [7-9]), actual calculations
invariably involve rather ideal geometries, boundary and initial conditions, and/or material
properties, The highly nonlinear character of the momentum equations for the most simple
hyperelastic material does not account for all of the computational problems-by definition, the
hyperelastic solid possesses no dissipative mechanism to provide smoothing or damping of higher
frequencies. Consequently, the computationally convenient features of damping encountered in
nonlinear viscoelasticity and thermoviscoelasticity calculations[10-12] are not present. To
complicate matters, it is now generally recognized that shock waves can be easily produced in
such materials, even when smooth initial conditions are prescribed. The recent experimental
work of Kolsky [13] gives evidence to the possibility of even tensile shock waves developing in
certain stretched natural rubbers, a phenomena already anticipated in the theoretical work of
Bland [8] and Chu [9]. In such cases, practically all of the popular numerical integration schemes
now used in structural dynamics are ineffective.

In the present paper, we consider an important subclass of the problems alluded to in our
opening comments, and we demonstrate that the finite-element method, when used in
conjunction with established methods of computational hydrodynamics and implemented with
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modern computing machinery, can be extremely effective for this class of problems. More
specifically, the present paper is concerned with the application of the finite-element method to
the calculation of shock waves and finite-amplitude acceleration waves in highly elastic
rubber-like materials. So as not to obscure conceptual and physical details, this investigation is
confined to the study of only longitudinal motions of finite homogeneous rods of isotropic,
incompressible, hyperelastic materials. We hope to treat the more difficult problems of
finite-amplitude waves in two- and three-dimensional hyperelastic bodies in later work. Herein,
we develop a fully discrete representation of the behavior which employs a finite-element
approximation of the spatial variation of the displacement field or the longitudinal extension ratio
and a finite-difference representation of the temporal behavior. For shock calculations, we
introduce an apparently new explicit integration scheme which is shown to be very effective in
handling the formation, propagation, and reflection of shocks in disturbed media. The scheme
involves the use of finite-elements as a basis for formulating Lax-Wendroff-type time integration
algorithms. Moreover, we also consider the problem of computing numerically various critical
times required for the formation of shocks from smooth and Lipschitz-continuous initial data. In
the final section of the paper, we cite numerical results obtained from a number of representative
test cases.

2. PHYSICS OF WA YES IN NONLINEAR ELASTC MATERIALS

In this section, we shall review certain features of the dynamical and thermodynamical theory
of finite elasticity that are essential to our study. More complete details can be found in the books
of Green and Zerna[l4], Green and Adkins [15], and Bland[8], and certain special features are
discussed in the papers of Nowinski[16], Ames[17], and Reddy and Achenbach[18].

2.1 Motion of a thin rod
We begin by considering longitudinal motions of a thin rod of isotropic, incompressible

material. While at rest in a natural reference configuration 02 0 , the rod has a uniform symmetric
cross section of area Ao, a length Lo, and a mass density po. To describe the motion of the rod
relative to its reference configuration, we establish a fixed spatial frame of reference x, with
origin 0 at one end of the bar, which is assumed to be restrained from motion. We denote by X
the labels of material particles (material coordinates) of the bar, and we select these labels so as
to numerically coincide with the spatial coordinates x when the bar occupies its reference
configuration. The function x = x(X, t) then gives the spatial position of the particle X at time t
and defines the longitudinal motion of the bar, while u(X, t) == x (X, t) - X defines the
displacemjent of particle X at time t.

The material gradient ax Ii! '( serves as a convenient measure of the deformation; physically, it
represents the longitudinal extension ratio A (also called the stretch) which is expressible in terms
of the displacement gradient according to

ax au
A=-=1+-=I+uax aX x

(2.1 )

where here, and henceforth, we use the subscript notation ux = au/ax to denote partial
differentiation with respect to X. The extensional strain 'Y is then simply (A 2 - 1)/2.

Now any disturbance supplied to the rod will travel with finite speed from one particle to
another in the form of a surface (curve) of discontinuity S (a wave) in the X-t plane. If we
denote by Yet) the particle X reached by a wave front at time t, then the set of points (Y(T), T), T
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being a real parameter, defines a curve in the X-t plane across which jump discontinuities in
various partial derivatives of u(X, t) can occur. Indeed, acceleration waves involve jumps in the
acceleration u" (and the stress gradient aa/aX) and shock waves (shocks) involve the
propagation of surfaces across which jump discontinuities in the velocity u(X, t) = Ut = au/at
and the stress are experienced. The intrinsic wave speed relative to the material, denoted c, is
then simply d Y(t)/dt. However, the spatial position yet) of the wave is clearly

yet) =x(Y(t), t)

and the absolute wave speed, as seen by a stationary observer, is

dy(t) dx(Y(t), t)
v =Cit= dt

(2.2)

(2.3)

2.2 The balance laws
We assume, of course, that the response of the bar satisfies the basic conservation laws of

physics. For the problem at hand, these assume the following global forms:
Linear momentum

Energy

Ao r (pou- ax) dx + AoIIa + pouc]y =O.
JLo-Y(t)

(2.4)

A o r (Pouu + e - axu - aux - qx) dx +Ao [-2
1

pocu 2 + ce +au +q] = O. (2.5)
JLo-nt) y

Calsius Duhem -inequality

(2.6)

Here a(X, t) is the first Piola-Kirchhoff stress, e is the internal energy per unit initial volume, q is
the heat flux, ~ is the entropy per unit initial volume, and 8 is the absolute temperature. Quantities
in brackets denote jumps suffered at the surface of discontinuity (Y(t), t); e.g.

[a]y = a(YW), t) - a(Y(t+), t), (2.7)

etc. Mass is conserved in the rod and we have ignored body forces and internal heat sources for
simplicity.

At particles X that do not fall on a surface of discontinuity, (2.4)-(2.6) lead to the local forms
of the balance laws

pou-ax=O

e- aA - qx= 0

. q8x
8~-qx +02:0.

(2.8)
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Whereas at the surface of discontinuity, we obtain the jump conditions:

poc[u]y+[uh=O

~poc[u2h+ c[eTIy +[uuh +[q]y= 0

c[th + [*],.2:0.
(2.9)

The equation (2.9h is the energy jump condition. We now assume that (2.9), is identically
satisfied and define the average material velocity at the jump by

where u+ = u(Y(n, t) and u- =u(Y(n, t). The first term in (2.9h then takes the form

1 [ .2] -1 [u]y[u
2
]y

2 Poc u y-2 [u]y

= -[u]yu

introducing (2.10) into (2.9h and setting Au = u- il, we see that

Another form can be obtained by defining the average stress

We notice that [uAu]y = a[u]y. Thus

(2.10)

(2.11)

(2.12)

Equation (2.12) will be called the local jump condition for energy.
It is often convenient to introduce the Helmholtz free energy cf>(X, t) and the internal

dissipation 8(X, t) defined for X¢. YU) by

cf> = e - to and 8 = O~ - qx

then (2.9)3 can be rewritten in the alternate form

(2.13)

(2.14)

In addition, we can also impose Maxwell's theorem, which asserts that for any function
I(X, t) jointly continuous in X and t, but whose first partial derivatives Ix and j suffer jump
discontinuities at S, the jump across S in the (two-dimensional) gradient of I must be parallel to a
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vector (-1, c) normal to S. Applying this idea to the motion x(X, t) yields Hadamard's
compatibility condition:

[U~y + c[ATIv = o. (2.15)

2.3 Waves in hyperelastic materials
We now aim our analysis toward waves in hyperelastic materials; that is, we wish to consider

materials for which there exists a potential W which is a function of the current value of A, and
for which

W= a.)., aW
and cr =--;JA' (2.16)

The question arises, however, as to whether or not a theory of hyperelasticity is reconcilable within
the thermodynamic framework established thusfar. This is a classic question, and standard
arguments can be found in a number of places (e.g. [6, 12]) to the effect that hyperelasticity is
indeed possible in a number of physically meaningful situations. The fact that these standard
arguments are not valid at surfaces of discontinuity is fundamental to the physics of shock waves.

We mention two cases. First, consider a class of perfect materials (see [6], p. 296), the
constitution of which is defined by equations for e, cr, eand q depicted as functions of the current
values of A and g, with q also dependent on ex (X, t). For reversible processes performed on such
materials, the dissipation 5 = eg - qx = 0, and (2.8h gives

( ae). ( ae). 1cr - - A + e- - g+- qe 2: 0
aA ag e x

(2.17)

so long as X EO (La - Y(t)). Secondly, we consider a class of simple materials (see [12], p. 202)
whose constitution is defined by equations for Ip, cr, gand q in terms of current values of A and e,
with q dependent upon ex (X, t) also. For reversible process (cr = 0), using (2.13) in (2.8) gives us
the inequality

( alp), ( alp). Icr - - A - g+- e+- qe 2: 0
aA ae e x

(2.18)

for all X EO (La - Y(t)). If these two inequalities, (2.17) and (2.18), are to be maintained for
arbitrary rates, it necessarily follows (see [12], p. 214) that in the absence of a shock, a theory of
hyperelasticity is appropriate for reversible isentropic processes (5 = 0, g= 0) performed on the
above class of perfect materials and for reversible isothermal processes (5 = 0, iJ = 0) performed
on the above class of simple materials. In the former case, the strain energy is associated with the
internal energy, in the latter case it is assoCiated with the free energy. However, since a shock is
characterized by discontinuities in the displacement gradient, the necessary derivatives of e in
(2.17), or of Ip in (2.18), do not exist for X = Y(t). Therefore, we must have energy dissipation at
X = Y(t), i.e. lJ = e{ - qx > 0, and we lose the notion of reversibility.

Due to the considerable difficulties involved in solving the nonlinear thermo-mechanical
equations governing irreversible thermodynamic processes, the only exact solutions
available [19,20] are for shocks with uniform conditions on both sides of the discontinuity.
Hence, for additional solutions, we need to simplify the governing equations so that they become
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tractable. One possibility, suggested by the exact discontinuous solutions themselves, is the well
known fact that "weak shocks" are nearly isentropic (e.g. see [8,21, or 22] for detailed
discussions). That is, taking the proportional change in magnitude across the shock of some state
parameter, say Ux, as a measure of shock "strength", the change in entropy across the shock is
only of third order in the shock strength for small changes of ux • Therefore, for weak shocks, we
can neglect the entropy change and consider ~ as constant for all X and t, i.e. the deformation
takes place isentropically. It is of special interest to consider this "isentropic approximation"
when the initial, or reference configuration is the natural stress-free state where A(X, 0) = 1,
o(X, 0) = To = constant. Then the isentropic approximation becomes ~ = 0 everywhere for all
time. Moreover, for this case, the isentropic approximations render the mechanical equations
independent of the thermal equations, and the mechanical jump conditions (the first of (12.9) and
(12.15)) alone are sufficient to determine the shock process. (Naturally the energy jump condition
remains valid, but here it would only be used to check the energy balance after solving the
problem.) Also, we can readily define the strain energy function W of (2.16) in terms of the
internal energy W(A) = e(A, Ol~~o, so that we have the constitutive relation for the stress
a = oe /oA, in agreement with (2. 16).

We remark that the local balance laws (2.8) suggest another simplification: the adiabatic
approximation, wherein we assume the heat conduction small enough to take q = O. Outside the
shock region, the adiabatic process is reversible (8 = 0); and then from (2.13) we get the
reversible adiabatic process to be an isentropic process. Hence, in regions of the rod where
X,c Y (t), a theory of hyperelasticity, in the sense of (2. I7), is possible. At the shock, the
adiabatic process is not reversible: entropy is produced. Then, by integrating the inequality in
(2.8) with q = 0, we get ~ = ~(X). Therefore the entropy at each material point has a constant
value unless a shock passes over the point, at which time the value of the entropy is changed to a
new constant. Consequently, until the time at which a shock forms, the adiabatic process is
isentropic for every X E (0, La); after this time, the adiabatic process is, in general, piecewise
isentropic, i.e. it is isentropic for every X E {CO, YW)], [Y(t +), La)}.

Both of these assumptions can, of course, be simultaneously incorporated if we consider the
propagation of weak adiabatic shocks. In this case, again following (2.17), the material will be
everywhere hyperelastic at all times.

3. EVOLUTION AND PROPAGATION OF DISCONTINUITIES

In this section we will look at the physical conditions which are generally required for the
formation and propagation of discontinuities-both shock waves and acceleration (simple) waves
in rubber-like materials. We also briefly consider methods for determining the time required for
discontinuities to evolve during the solution process.

3.1 Propagation of shock and acceleration waves
In the absence of shocks, we previously obtained the first member of (2.8) as the local form of

the law of conservation of linear momentum. In view of the constitutive relation (2.13) for
hyperelastic materials we have a = a(A), so that the local momentum equation for such materials
can be written in the form

(3.1)

where the squared intrinsic wave speed, c 2(ux ), is given by
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~ 1 da
c (Ux ) =: podA'
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(3.2)

We also note that, since i.. =: Ux, we can recast the local momentum equation (3.1) in terms of A
according to

(3.3)

where, clearly, the forms of c2(A) and cZCux ) wiII be different.
As noted earlier, for hyperelastic solids the stress is derivable from a potential function W

which represents the strain energy per unit undeformed (reference) volume va. For isotropic
incompressible bodies, W is generally defined in terms of the first two principal invariants, II and
12, of Green's deformation tensor, the third principal invariant being unity. In the present case,
11 == 2A -I + A2,12== 2A + A-z, and elimination of the hydrostatic pressure with the condition that
transverse normal stresses are zero, leads to the general constitutive law

(3.4)

where W" == aWl aI", a == 1,2. Substituting (3.4) into (3.2), we observe that the square of the wave
speed in materials defined by (3.4) is of the form

c 2== l- [(1 + 2A -3)W1 + 3A -·W2 +2(1- A-3)2(WI1 A2+2W12A + Wdl. (3.5)
po

If we eliminate, on physical grounds, the possibility of complex wave speeds, we, in turn,
impose conditions on the form of Wand its derivatives W", W"/3' In this regard, we shall assume
that the stress a is a continuous monotonically increasing function of the stretch A, so that for all
A E (0, 00), we have O<poc 2(A)==da/dA <00. This important property allows us to interpret
qualitatively a number of interesting nonlinear wave phenomena. For example, suppose that a
time-dependent surface traction is applied at the free end of the rod. During each infinitesimal
increment in time, the corresponding increment in load produces a "wavelet," so that, using
Nowinski's terminology [16J, the net effect of the loading is to produce an "infinite manifold" of
wavelets propagating along the rod. Obviously, each successive wavelet propagates at a speed
determined by the instantaneous slope of the a vs A curve for the material. Thus if consecutive
wavelets are propagated with decreasing speeds, the slope of the wave front wiII gradually
decrease (contrasting markedly with the usual sharp discontinuity at the wave front in materials
with linear a-A curves), and the response wiII be propagated as a simple wave. However, if the
distance between successive wavelets decreases during propagation (they are generated with
increasing speeds), the wave profile steepens until the discontinuity is transformed into a shock
wave.

To be more specific, consider, for example, the following special forms of the strain energy
function:

(i) The neo-Hookean form, W == C(II - 3)

(ii) The Mooney form, W == C(II - 3) + C2(I2 - 3)

(iii) The Biderman form, W == BMI - 3) + B2(I1 - 3)2 + Bill - 3)3 + B.(I2+ 3).

(3.6)

(3.7)

(3.8)
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Here C, C" C2 , ••• , B 4 are material constants. Examples of a variety of other forms of W
proposed for real materials are summarized in [12]. Note that for Mooney materials

whereas in the case of Biderman materials

C 2 = l HB , +2B2(2A -1 + A2 - 3) +3B3(2A -1 + A2 - W](l + 2A -3)

po

+ 3B4 A-4 + [4B2 + 12B3(2A -I + A2 - 3)](A - A-2n

(3.9)

(3.10)

The function c 2 for neo-Hookean materials follows from (3.9) by setting C2 = O. Equations
(3.6)-(3.8) with (3.4) and (3.9) and (3.10) describe a-A and c-A curves of the type shown in Figs.
1 and 2. Clearly, the type of wave generated by an initial disturbance depends upon both the
initial state (i.e. the initial value of A) and whether A is subsequently increased or decreased. A
discontinuity is propagated as a simple wave if, and only if, the intrinsic wave speed of the
material in front of the discontinuity is greater than that of the material behind the discontinuity

P'
P'

(I) =Mooney / neo - Hookeon
(2)= Biderman

Fig. I.

b [.<
" "
-I ~

(2)

--==---=----(I)

Fig. 2.
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(see [21], p. 243). Hence, Fig. 2 suggests that for both the Mooney and neo-Hookean materials,
only compression shock waves can be developed. However, for certain Biderman-type materials
(curve (2) in Fig. 2), it is possible to produce a tensile shock wave if the material is prestretched
sufficiently. The development of such tensile shocks has, in fact, been observed experimentally
by Kolsky [13]. It is also interesting to consider the case in which an applied tension load is
suddenly removed. From Fig. 2 we can see that this discontinuity cannot be propagated by a
simple wave since the wave speed is smaller before the load is released than after. Thus, it
follows that the instant the stress at the end of the rod begins to decrease (after having increased)
is also the time at which the first wavelet emanates from the end with a propagation speed faster
than the preceding wavelets. Therefore, at some time subsequent to the moment when the
unloading starts, the propagated influence of this release, or unloading, is expected to develop
into a shock wave.

3.2 Evolution of discontinuities
The formation of discontinuities in solutions of nonlinear hyperbolic equations has been a

topic of interest for many years. The research on this topic falls into two principal categories:
discontinuities which evolve from Lipschitz continuous initial data and those which evolve from
smooth initial data. In the former case, there is a clearly defined wave front and a characteristic
along which the initial discontinuity (even when starting with analytic initial data, a Lipschitz
discontinuity can subsequently develop) propagates until it tends to a jump discontinuity at some
critical time, say tCR' This jump discontinuity then propagates in a completely different manner
from the Lipschitz discontinuity. As this is discussed in detail in [8,21, and 23], we will mention
only the essential features.

In general, the characteristics of the nonlinear wave equation are curved lines in the X-t
plane. However, if a constant initial state is prescribed for the rod, the characteristics of positive
slope are a family of straight lines and the corresponding wave is a simple (acceleration) wave. If
the excitation at the end of the rod is such that successive wavelets are generated with decreasing
shift rates, these straight characteristics diverge in the X-t plane. But, if the shift rate at the end
of the rod increases (e.g. due to compression or, sometimes, sufficient tension with an
"S-shaped" a-A curve), the characteristics of positive slope will no longer diverge. Instead, they
converge and form an "envelope" as shown in Fig. 3. It is on this envelope that the value of

x
Fig. 3.
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velocity and stress, carried by the characteristics, conflict so that the curve C2 is an
approximation of a shock wave propagating with variable speed and carrying a variable stress.
The earliest time that such an envelope appears, i.e. when the first two characteristics converge, a
cusp is formed at some point XCR• At this point (XCR , tCR) a unique solution of the wave motion,
characterized as a simple wave, is mathematically impossible. It is the jump conditions which
enable us to continue past (XCR , tCR) with a unique solution for the shock.

The second category; the evolution of discontinuities from smooth initial data, is the topic
which seems to be of current interest (see e.g. [17,24-26]). When applicable, the method
presented by Ames[17, 24] is the simplest and the most accurate. This method results from
observing that classes of quasi linear equations can be obtained by differentiation of first-order
nonlinear equations. The first order equations are then used to calculate the time feR.

For the one-dimensional rod considered herein, we find from [17] that the critical time is given
by

. 1
tCR = mm h'¢' (3.11)

where primes mean differentiation of the quantity with respect to the argument and the forms of h
and ¢ depend upon which form of the wave equation we are considering, (3.1) or (3.3). For the
displacement form of the equation of motion, (3.1), we have

Ux = h [X + c (ux)t]

¢ = c(ux )

(3.12)

(3.13)

with c(ux ) being the material shift rate defined in (3.2). If we consider (3.3) on the other hand, we
have

A= h[X + ¢(A)t]

¢= c(A)

where the form of c (A) is given in (3.5).

(3.14)

(3.15)

4. FINITE ELEMENT APPROXIMATIONS

We are now ready to develop discrete models of the equations governing nonlinear waves by
using the finite-element concept. Toward this end, we begin, as usual, by partitioning the rod into
a finite number E of segments connected together at nodal points at their ends. The E + 1 nodes
are labeled 0 = Xl < X 2 < ... < X E

+
I = L o, and the mesh length h = xa+l - xa (a = 1,2, ... , E)

is assumed to be uniform. In the finite-element method for nonlinear waves, we seek approximate
solutions for the displacement field u, the solution to (3.1), or the extension ratio (stretch) A, the
solution to (3.3), in a finite dimensional subspace S ~(o, L o) or S~O, L o) of the original solution
space HI(O, L o). We could introduce an approximation for u of the form

u(X, t) = Ua(t)'J]a(X) (4.1)

where Ua (t) are the nodal values of the displacement, 'J]a (X) is a basis for S ~(O, Lo), and the
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repeated index a is summed from 1 to E + 1. Similarly, we could introduce an approximation for
A of the form

(4.2)

where Aa(t) are the nodal values of the extension ratio and ~a(X) is a basis for S~(O, Lo). In
general, the functions 'J/a(X) and ~a(X) are generated from local (elemental) basis functions.

In the finite-element method, it is convenient to first describe the behavior of each element
independently in terms of the nodal values; the entire set of elements is then connected together
by establishing the nodal connectivity. Hence we now take advantage of this fundamental
property of finite-element models and temporarily focus our attention on a typical element from
the assemblage representing the continuous rod.

To construct the finite model of an elemental field quantity, say f(X, t), we introduce the
approximating functions for each element which are locally of the form

(4.3)

For simplicity, we consider only first-order representations, so that the repeated index a is a
nodal index which ranges from 1 to 2 for the one-dimensional rod element. Here, fa (t) is the value
of f(X, t) at node a of the element at time t, and !/Ja(X) are the usual local (elemental)
interpolation functions which have the following properties

In general, these local interpolation functions contain complete polynomials of degree p, where
p + 1 is the order of the highest material derivative that appears in the energy equation for the
element. In this case, we have p = 1 (see [12]). Therefore, the particular elemental field quantity
f(X, t) is simply a linear function of the local coordinates of the elements; i.e.

(4.4)

where, for any element

(4.5)

4.1 Galerkin models for nonlinear wave propagation
Using the local approximation (4.3) we can construct finite element models for (3.1) and (3.3)

using the concept of weak or variational solutions. This naturally results in Galerkin-type models.
Initially, consider (3.1), we seek weaker solutions to (3.1) by only requiring that

(4.6)

for any arbitrary function {3(X) which has a continuous derivative and vanishes outside the
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element. Similarly, we can seek weaker solutions of (3.3) by requiring that

(4.7)

where cP(X) is an arbitrary function which has a continuous first derivative and which vanishes
outside the element.

There is an interesting relationship between (4.6) and (4.7). Integrating by parts and setting
f3 = -acP/ax

I
h .. Ih a

o (A-(c
2
Ax)x)cP dX = 0 ax(ii-c

2
Uxx)cP dX

1h ( •• 2 ) acP dX
= - 0 U - C Uxx ax

= f (li - c2 uxx)f3 dX. (4.8)

This result essentially implies that if A satisfies (4.7), A = I +(au/ax), and f3 = -acP/ax, then u
satisfies (4.6). The converse also holds.

In our later work, we want to examine properties of the finite element models developed from
(4.6) and (4.7) using certain fundamental ideas of finite elements concerned with energy. Clearly,
under certain conditions, finite element models developed from (4.6) and (4.7) are equivalent.

Now finite element models can be developed from (4.7) through the following procedure:
Integrating (4.7) by parts gives

I
hAcP dX +Ih .1 aa cPx dX = [.1 Ba cPJ h

o 0 po ax po aX 0

where, from (3.2), aa/ax = (aa/aA)Ax = c 2Ax. If cPx is constant, (4.9) becomes

I
h.. I h 2 h

AcP dX +- cPx [a ]0 = [c AxcP]o .
o po

Taking a piecewise linear approximation (4.3) for A, we have

A(X, t) = !/J,,(X)A,,(t) = (a" +b"X)A"

where a" and b" are defined in (4.5). Hence, with (4.5) in (4.11), we have

1
Ax = !/J".xA" = b"A" = Ii (,12 - A,)

1
!/J".x = b" =11[-1,1].

(4.9)

(4.10)

(4.11)

(4.12)

Taking cP(X) = !/J,,(X) in (4.10) and incorporating (4.12), we obtain the equation of motion for
a typical rod element
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where ml3" is the consistent mass matrix defined by

p" is the generalized force at node Q

Equation (4.14) can be integrated to get the consistent mass matrix in the form
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(4.13)

(4.14)

(4.15)

(4.16)

where m = poAoh is the mass of a typical element and [)i3a is the Kronecker delta. However, if
the mass is considered to be lumped at the nodes, ml3" will be of the diagonal form, m[)I3,,/2. We
prefer the lumped mass model in this study, not only for the increased computational speed, but
also because it tends to maintain the finite character of the speed at which waves are propagated
along the rod while simultaneously reducing "ringing" in front of the wave front.

We now turn to the displacement form of the equation of motion (3.1). We develop finite
element models from (4.6) using the same procedure used for (4.8); that is, we approximate the
local displacement field by

(4.17)

with a" and b" defined in (4.5), and here u" = u(X", t). Accordingly, taking f3(X) = l/f,,(X) in
(4.6), we obtain as the equation of motion for a typical rod element,

In this case, since ux = b"u", both A and a = a(A) are constant for each element. The mass matrix
is as previously defined, but the generalized nodal force p" is now

(4.18)

4.2 Global form of the equations of motion
To facilitate book-keeping, we use superscripts as the element index and subscripts as the

nodal index. If we define PN as the net generalized force applied at node N, so that
PN =P2N

-
t +PIN, then the global equation of motion for node N is obtained from (4.13) as

(4.19)

where, from (4.5), bN
N

-
1 = +h- t and bN

N = -h- I
, and we have used the lumped mass model. At

the ends of the rod, of course, the form of (4.19) changes according to the type of boundary
conditions. Equations (4.19) represent the global system of nodal equations of motion for the
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finite-element model of the rod. Since the solution to these equations will be in terms of the
displacement gradients (A - 1 = au /ax), the nodal displacements, if desired, are obtained by
spatial integration.

The displacements can be obtained directly if the global equations of motion are formed as
above, but using (4.18) rather than (4.13):

(4.20)

4.3 Justification of the finite element method for the analysis of wave propagation problems
In order to justify the finite element models of shock smearing type introduced in Section 4.1,

we show that in the neighborhood of surfaces of discontinuity, such as shock waves in
hyperelastic bodies, the jump conditions are satisfied in an average sense.

In equation (4.17) we introduced the finite element approximation for the local displacement
field. In this section we would like to introduce a more general displacement approximation. This
displacement approximation would allow jumps in the first spatial and temporal derivatives as
long as they are compatible with the kinematic compatibility equation (2.15). We use the same
notation for the displacement approximation as was introduced in (4.17)

(4.21)

(4.23)

However, we intend that the parameters u'" represent the nodal displacements in the element plus
certain generalized coordinates which involve the shock strength and shock position and are
continuously differentiable functions of time. In this case the trial functions ljJ", (X) must be
chosen from a very general class of functions. This class is made up of the union of class C(O, h)

of those functions which are continuous everywhere in the element and the class J(O, h) of
functions which have a finite jump at the surface of discontinuity S but are continuous
everywhere else in the element.

The finite-element representation for the local material velocity and acceleration can be
obtained by differentiating (4.21):

u(X, t) = u",(t)ljJ", (X)

u(X, t) = u",(t)ljJ(X).

From (4.21) we can see that if the trial functions are continuous everywhere, the first temporal
derivative must be a continuous function of X, and a shock smearing scheme would result.
However, if the trial functions were discontinuous, shock fitting schemes would be obtained.

Consider the typical element containing a surface of discontinuity S as shown in Fig. 4. The
global energy balance for this finite element is of the form

where we have used (2.5), assumed the local energy relations (2.8h and (2.12) are identically
satisfied, and eliminated the internal energy terms. Now, the second term of the integral in (4.22)
can be integrated by parts

Ao L-y axu dX = -AoL.y aux dX +Ao[auloh +Ao[auh
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5
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Fig. 4.

so that, with (4.23), (4.22) can be rewritten as
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Ao r (poUU - aux ) dX - Ao[auloh +-2
1

POAoc[u 2h - AoiT[u]y =O. (4.24)Jh-y

Introducing the local finite element approximation (4.17) for the displacement u and its
derivatives in (4.24), we have

where, at this point, we need not specify the precise form of the local interpolation functions
t/Ja (X). The above equation can be written more compactly as

where we have defined

Pa = Ao[at/Ja loh

1
Ra13 = 2poAoc[t/Jat/Jl3h

Sa = AoiT[t/Jah.

(4.25)

(4.26)

Since (4.25) must be valid for arbitrary motions of the element, it must also hold for arbitrary
values of the nodal velocities ua • In particular, if (4.25) is to hold for arbitrary ua , the term in the
parentheses must vanish for all values of a. Thus,

(4.27)
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This equation represents the consistent finite-element equations of motion with shock terms.
Thus, as might be expected, a consistent finite element momentum equation for nonlinear wave
propagation problems contains the proper jump conditions at the shock.

Based on the above development, we now examine the finite element model (4.18) developed
from (4.6) and the model (4.13) developed from (4.7). We will show that (4.13) and (4.18) can be
obtained from global balance laws, that using global energy balances and the modeling procedure
introduced above insures that the jump conditions (2.9) are satisfied in an average sense, and that
this implies that (4.13) and (4.18) satisfy the jump conditions in an average sense.

If the functions !/Ju (X) in (4.27) are assumed to be continuous, then RU (3 = S(3 = 0 (a, f3 = 1, 2).
We examine two cases. First, if the !/Ju (X) are linear over the element, the finite element scheme
(4.18) is obtained. Thus the finite element model (4.18) can be derived from the global energy
balance (2.5). Secondly, suppose the !/Ju(X) are constant over the element and the d>(X)
introduced in (4.7) are related to the !/Ju(X) by taking d>(X) = gu(X) and

Then the gu (X) are linear functions. This implies that models of the form (4.13) can be derived
from energy principles. To see this, simply set q; = gu(X) and (3 = -!/Ja(X) in (4.8). Thus both
models of the form (4.13) and (4.18) can be derived from energy balances of the form (2.5) if certain
restrictions are placed on the trial functions.

4.4 Satisfaction of jump conditions
Now the important question that arises is whether or not the jump conditions (2.9) are

satisfied in an average sense in the element when the global energy balances described are used to
derive finite element models. In this discussion, by "an average sense" we mean in a sense at least
as weak as L,(O, h). This is certainly true of (2.9h since it was obtained from a global energy
balance (2.5) by shrinking the volume of the rod to zero at the surface of discontinuity while
holding Ao constant. In addition, in our derivation, we assumed that (2.12) was identically
satisfied on the surface of discontinuity S. Now if (2.12) is satisfied exactly while (2.9h is satisfied
in an average sense, then (2.9)1 is satisfied in a average sense (see the derivation of (2.12)). In
addition, the Clausius-Duhem inequality (2.9)3 is satisfied because of the constitutive
assumptions introduced in section 2.3. Thus, the use of the global energy balance (2.5) and the
procedure introduced above insures that the local jump conditions (2.9) are satisfied in an average
sense across the element if the element is sufficiently small. To complete the argument, we
conclude that because (4.13) and (4.18) can be derived from global energy balances they satisfy
the local jump conditions in an average sense in the element.

5. FINITE ELEMENT/DIFFERENCE EQUATIONS

The remaining step in discretizing the nonlinear equations is approximating their temporal
behavior. Solving the nonlinear equations of motion by stepwise numerical methods can be
severely complicated by the presence of shocks. Therefore, we choose an explicit finite
difference scheme which automatically treats the shocks, whenever and wherever they may
occur, without necessity of the tedious application of the jump conditions at each time step of the
solution process. This method is the well-known Lax-Wendroff difference scheme [27,28], which
is generally classified as an artificial dissipative method. The success of this particular method
comes from applying finite difference approximations to the governing equations expressed as
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"conservation" laws. (For details of the theory of conservation laws and weak solutions (see, e.g.
[23,27, or 29]). The novel aspect of the following temporal discretization is that, by rewriting (3.1)
as (3.3) we obtain the governing equation in the form of a conservation law which, with only a
linear finite-element approximation, enables us to develop a Lax-Wendroff type integration
scheme.

5.1 Lax-Wendroff finite-element scheme
The temporal discretization is accomplished in the spirit of the Lax-Wendroff equations (see

[28], p. 302): we first denote qN = AN and expand qN(t + M) into a Taylor series up to second
order terms

(5.1)

The t derivatives in (5.1) are now replaced by X derivatives (except for the nodal force PN ) by
means of (4.17) where

.. iJ. A o ( . 2 . . ) 1 p'qN =-;- qN =-h aN-I - aN + aN+1 +- N.
ut m m

Since a = a(A), & = poc 2 q, so that (5.3) becomes

(5.2)

(5.3)

(5.4)

Note that since the quantities PN are prescribed, so also are the FN (e.g. if PN = sin t, then
FN =cos t). Substituting (5.2) and (5.4) into (5.1), we obtain the finite element/difference equation
for the interior nodes of the discrete model:

n+ I (~t)2 [1 (n )2 n {( h)2 ( n)2} n 1(n )2 n ]qN = h 2 CN+I qN+1 + M - CN qN +2 CN-I qN-1

(5.5)

where t = n~t, and q(t) = q(nM) = qn, etc. Similarly, the finite element/difference equations for
the end nodes are

n+l (M)2 [( n)2 n {( h)2 ( n)2} n] 2MAo( n n) 1 [2' P n (' 2p' nql = h C2 q2 + ~t - CI ql + mh a2 - al + m ~t I + ~t) I]

(5.6)
and

n+l (M)2[( n)2 n {(h)2 (n )2 n ] 2MAo( n n)qB+l= h CB qB + ~t - CB+l qB+l + mh aB -aB+l

(5.7)
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To compute the extension ratios, we simply repeat the foregoing procedure: we first expand
\ "+1.
liN •

(5.8)

and so, using (5.2), we get:

(5.9)

where UN" and (CN")2 are determined from (3.4) and (3.2) respectively.
Equations (5.5)-(5.7) and (5.9) are the 2(E + I) finite element/difference equations used herein

for the study of shock waves.

5.2 Velocity formulated central difference scheme
To illustrate the effectiveness of the Lax-Wendroff method we will compare the results with

the finite element/difference equations which are obtained using the displacement equations
(4.18). The temporal discretization is accomplished for these equations by using velocity
formulated central differences [30], in which the general nodal equation, UN(t) = F(t), is
approximated by introducing the nodal velocity VN = UN and thereby generating two equivalent
first order equations, which are then differenced to obtain

(5.10)

Direct substitution shows that (5.10) is equivalent to using the usual central difference
approximation for UN. However (5.10) generally admits to less round-off error (see [30]).

6. NUMERICAL RESULTS

In this section, we cite numerical results obtained from application of the preceding theory to
representative problems. For our numerical examples, we consider a thin rod of Mooney material
(C, = 24·0 psi, C2 = 1·5 psi) with the following undeformed characteristics: length = 3·0 inches,
cross-sectional area =0·0314 in2

, mass density = 10-4 Ib.sec2/in4
• For the finite element model, we

take 60 evenly spaced elements, so that h = 0·05 in. and E = 60.

6.1 Tensile loading (square wave)
We consider a force of constant magnitude applied at the free end of the rod as a step function

at t = 0, then similarly removed at a later time t = t*, Le. a square wave. For this example,
t * = 0·002 seconds. Figure 5 shows the stress wave response to a two pound step loading (this
corresponds to 86% strain statically) for both mass distributions and both time integration
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schemes previously discussed. Several important items mentioned earlier can be observed in Fig.
5.

(1) The lumped mass model tends to preserve the finiteness of the speed of propagation.
(Note the "ringing" in front of the consistent mass stress wave.)

(2) The acceleration wave front does tend to flatten with time.
(3) The wave is propagated into the undisturbed portion of the rod as a simple wave. Recall

that for a simple wave, Y(t) is constant, so that by multiplying Y(O'OOl) by 2·O-the ratio of the
elapsed time increments-we obtain Y(0'OO2), except, of course, for that portion of the wave
affected by the fixed boundary.

(4) The Lax-Wendroff scheme appears to be effective for short time periods, particularly in
the presence of shocks. Not only does it produce no ringing in front of the wave, but the
unloading shock wave is depicted without the large oscillations behind the shock. (These
oscillations have been interpreted by some as numerical instability of the integration scheme.
This is not so; the amplitude of these oscillations does not change with time. As pointed out in
[28], these are lumped mass oscillations resulting from discretization error and they represent the
internal energy which must appear in the "shocked" region according to the jump conditions. It
appears that the Lax-Wendroff scheme has sufficient dissipation to convert this oscillatory
energy into a good approximation of the internal energy.)

Figure 6 shows in some detail the response of the rod to this 2-lb step load. The results confirm
the fact that weak shocks propagate in a manner similar to simple waves-the stress increases at
the wall almost by a factor of 2·0 and the stress wave is reflected from the wall without
appreciable change in shape or magnitude.
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6.2 Sinusoidal forcing function
This example dramatically illustrates that the central difference scheme, without modification,

cannot handle shocks. Here a concentrated, time-dependent load which varies sinusoidally is
applied at the free end; a complete loading cycle occurs in 0·002 seconds. It is clear from the
computed response shown in Fig. 7 that shocks develop quickly for this kind of loading. Unlike
the response for the tensile step load where the unloading wave is produced by simply removing
the load, the sinusoidal load actually "pushes" the end of the rod. The instant the load starts to
decrease is the moment when the first wavelet is generated which propagates faster than the
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preceding one. Thus, at some time subsequent to when the compression cycle starts, a
compression shock forms in the rod.

A comparison between the two integration schemes is also shown in Fig. 7 for the sinusoidal
loading. In this case, it is clear that the "shocked internal energy" behind the compression shock
renders the central difference scheme unacceptable. It is interesting to note, however, that the
tension cycle evidently "absorbs" the large oscillations preceding it and again produces a smooth
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wave front. The detailed response to this loading is shown in Fig. 8. From the response shown, we
notice several interesting features of nonlinear wave motion:

The compressive shock wave is reflected from the wall as a compressive shock wave by
almost doubling the compressive stress; but the tension part of the stress wave is reflected with
only a small increase in stress.

At t = 4·7 millisec, two compression shocks collide. The numerical results shown here
indicate that when two shocks collide in a solid material, they penetrate one another with little or
no deterioration. This is apparently contrary to the collision of shocks in gases[21].

By comparing the response at t = 3 msec with that at t = 5 msec, we note that the response
tends to repeat itself (with some variation due to the reflection) with essentially the same period
as that of the forcing function.

As in the development of shocks from Lipschitz continuous data, the shock forms subsequent
to initiation of the compressive cycle. Thus we are led to examine the positive slope
characteristics in the X-t plane to see if they predict tCR for this type of loading. Figures 9 and 10
show that if we assume straight compression characteristics of positive slope, the cusp of the
corresponding envelope in the X -t plane does, in fact, give a good estimate of the tCR observed in
the stress-time plots.

Acknowledgements-This work was completed at The University of Texas at Austin under the support of the National
Science Foundation through grant GK-39071. Phases of the work were done at the Research Institute of the University of
Alabama in Huntsville through support of the U.S. Air Force Office of Scientific Research under Contract F44620-69-0124.

REFERENCES
I. C. A. Truesdell, The Mechanical Foundations of Elasticity and Fluid Dynamics, J. Rational Mechanics and Analysis I.

125-300 (1952).
2. R. S. Rivlin. Large Elastic Deformations of Isotropic Materials. I. Fundamental Concepts, Phi/. Trans. Royal Society of

London. A240, 459--490 (1948).
3. J. K. Knowles, Large Amplitude Oscillations of a Tube of Imcompressible Elastic Material. Quart. app/. Maths. 18.

71 (1960).
4. J. K. Knowles. On H Class of Oscillations in the Finite-Deformation Theory of Elasticity, J. Appl. Mech. 29. 283 (1962).



Afinite element analysis of shocks and finite-amplitude waves 401

5. 1. K. Knowles and M. T. Jakub, Finite Dynamic Deformation of an Incompressible Elastic Medium Containing a
Spherical Cavity, Archive for Rational Mechanics and Analysis 14, 367 (1965).

6. C. A. Truesdell and R. Toupin, The Classical Field Theories, in Encyclopedia of Physics, Vol. III/I. Springer, New York
(1%0).

7. H. Kolsky, Stress Waves in Solids. Clarendon Press, Oxford (1953); Dover Reprint (1964).
8. D. R. Bland, Nonlinear Dynamic Elasticity. Blaisdell, Waltham, Mass. (1%9).
9. B. T. Chu, Finite Amplitude Waves in Incompressible Perfectly Elastic Materials, J. Mech. Phys. Solids 13,17-28 (1%5).

10. J. T. Oden and J. Poe, On the Numerical Solution of a Class of Problems in Dynamic Coupled Thermoelasticity,
Developments in Theoretical and Applied Mechanics, Vol. V, Proceedings of the Fifth Southeastern Conference on
Theoretical and Applied Mechanics (1970), Raleigh, North Carolina, Pergamon Press, Oxford.

II. J. T. Oden and W. H. Armstrong, Analysis of Nonlinear, Dynamic Coupled Thermoviscoelasticity Problems by the Finite
Element Method, Int. 1. Computers and Struct. 1, 603-621 (1971).

12. J. T. Oden, Finite Elements of Nonlinear Continua. McGraw-Hill, New York (1972).
13. H. Kolsky, Production of Tensile Shock Waves in Stretched Natural Rubber, Nature 224 (No. 5226), \301 (1%9).
14. A. E. Green and W. Zerna, Theoretical Elasticity, Second Edition, Oxford University Press (1%8).
15. A. E. Green and J. E. Adkins, Large Elastic Deformations, Second Edition, Oxford University Press (1970).
16. J. L. Nowinski, On the Propagation of Finite Disturbances in Bars of Rubberlike Materials, 1. Engng. for Industry,

ASME 87, 523-529 (1965).
17. W. F. Ames, On Wave Propagation in One-Dimensional Rubberlike Materials, 1. of Mathematical Analysis and

Applications 34 (No. I), 214-222 (1971).
18. D. P. Reddy and J. D. Achenbach, Simple Waves and Shock Waves in a Thin Prestressed Elastic Rod, ZAMP 19,

473-485 (1%8).
19. D. R. Bland, Dilatational Waves and Shocks in Large Displacement Isentropic Dynamic Elasticity, J. Mech. Phys. Solids

12, 245-267 (1964).
20. W. D. Collins, One-Dimensional Non-Linear Wave Propagation in Incompressible Elastic Materials, Quart. 1. Mechanics

and App/. Maths. 19, 259--328 (1%6).
21. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves. Interscience, New York (1948).
22. A. H. Shapiro, The Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. 1. The Ronald Press Co., New

York (1953).
23. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. II. Interscience, New York (1%2).
24. W. F. Ames, Discontinutiy Formation in Solids of Homogeneous Non-Linear Hyperbolic Equations Possessing Smooth

Initial Data, Int. 1. Non-Linear Mechanics 5,605-615 (1970).
25. P. D. Lax, Development of Singularities of Solutions of Non-Linear Hyperbolic Partial Differential Equations, J. Math.

Phys. 5 (No.5), 611-613, (1964).
26. A. Jeffrey, The Evolution of Discontinuities in Solutions of Homogeneous Nonlinear Hyperbolic Equations Having

Smooth Initial Data, 1. Math. and Mechanics 17 (No.4), 331-352 (1%7).
27. P. Lax and B. Wendroff, Systems of Conservation Laws, Communications on Pure and Appl. Math. 13,217-237 (1%0).
28. R. D. Richtmyer and K. W. Morton, Difference Methods for Initial- Value Problems, Second edition, Interscience Tracts

in Pure and Applied Mathematics, No.4. Interscience, New York (1967).
29. A. Jeffrey and T. Taniuti, Non-Linear Wave Propagation. Academic Press, New York (1964).
30. S. W. Key and Z. E. Beisinger, The Transient Dynamic Analysis of Thin Shells by the Finite Element Method, Proc.

Third Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson Air Force Base, Ohio (October, 1971).


